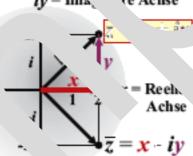

Formelsammlung in Mathematik

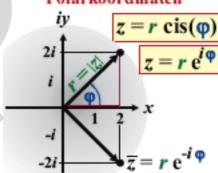
1. Zahlenmengen	Natürliche, ganze, rationale, reelle und komplexe Zahlen	2
2. Algebra	Rechengesetze, Äquivalenzumformungen	3
	Binomische Formeln, Binomischer Satz, Bruchrechnen	4
	Potenzen, Logarithmen	5
	Translation, Rotation	5
3. Planimetrie	Allgemeine und rechtwinklige Dreiecke	6
	Gleichschenklige und gleichseitige Δ , Linien im	7
	Vierecke	8
	Kreisteile, Kreisgleichungen, Kreisw. \sätze	9
4. Stereometrie	Prinzip von Cavalieri, Prismen und Pyn Öden	10
	Kugel, Platonische Körper	11
	Körper mit runden Begrenzu "nach"	12
5. Funktionen	Umkehrfunktionen, Polyr vinktionen	13
	Geradengleichungen, Betrag. vktion	14
	Parabeln, Potenz' en, Ge hor onale Funktionen	15
	Exponential- ur Logari\ \u00fasfunk\ \u00an	16
	Trigonom Funktionen	17
	Symmet 3	18
6. Gleichungen	Quadr. he Gleichu. ¬, Polynomgleichungen	19
7. Folgen und Reihen	' 'thmetis und geometrische Folgen und Reihen	20
	Gre ∵erte, G ∵wertsätze, Regel von de l'Hôpital	21
	M elv Harmonische Teilung, Vollständige Induktion	22
8. Diggreenning	ifferen haotient, Ableitungsregeln	23
	Ableitungen und Stammfunktionen	24
9. ntegralre	becommutes und unbestimmtes Integral	24
	Integrationsregeln, Rotationsvolumen, Bogenlänge	25
	Potenzreihen, Taylor-Polynome	26
10. Vekto som e	Elementare Vektoroperationen	27
	Skalarprodukt, Vektorprodukt, Spatprodukt	28
	Ebenengleichungen	29
11. Stochastik	Kombinatorik, Wahrscheinlichkeit, Mengenlehre	30
	Wahrscheinlichkeitsverteilungen	31
	Binomialverteilung, Normalverteilung	32
	1-Var Statistik: Mittelwert, Median, Modalwert, Varianz	33
	2-Var Statistik: Lineare Regression	34

1 Zahlenmengen

- Natürliche Zahlen $\mathbb{N} = \{0, 1, 2, 3, ...\}$
- Ganze Zahlen $\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}$
- Rationale Zahlen = Menge aller Brüche:
 Q = {m/n | m, n ∈ Z, n ≠ 0} = Zahlen mit abbrechender oder periodischer Dezimalentwicklung.
- Reel' Tahlen R Ver gung r rationalen u. Tration Talen.
- Komplexe 'tlen $\mathbb{C} = \{x + iy \mid x, \quad \mathbb{R}\} \text{ min } i = -1.$


Komplexe Zahlen

- ▶ Imaginäre Einheit: $i^2 = -1$
- ► Eulersche Formel:


$$e^{i\varphi} = \cos(\varphi) + i \sin(\varphi)$$

 $e^{i\varphi} = \operatorname{cis}(\varphi), \quad |e^{i\varphi}| = 1$

► Gausssche Zahlenebene: xy-Ebene der kompl. Zan.

Kartesisc. ordinaten iy = Ima re Achse

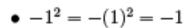
Polarkoordinaten

Komplexe Zahl		$z + iy \begin{cases} x = \text{Realteil} \\ y = \text{Imaginärteil} \end{cases}$	$z = r \cdot e^{i\varphi} = r \cdot \operatorname{cis}(\varphi)$
Konjugierte	7	$\overline{z} = x i y$	$\overline{z} = r \cdot e^{-i\varphi}$
P 9	, z	$=\sqrt{z\overline{z}}=\sqrt{x^2+y^2}$	$ z = r = \sqrt{x^2 + y^2}$
1		$\mathbf{x} = r \cdot \cos(\varphi)$	$\tan(\varphi) = \frac{y}{x}$
Winkel		$y = r \cdot \sin(\varphi)$	$\varphi = \arg(z)$
ation Subtraktion	$z_1 + z_2 \\ z_1 - z_2$	$(\boldsymbol{x_1} \pm \boldsymbol{x_2}) + i(y_1 \pm y_2)$	
M:on	$z_1 \cdot z_2$	$(x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$	$r_1 r_2 \cdot \operatorname{cis}(\varphi_1 + \varphi_2)$
Division $(z_2 \neq 0)$	$\frac{z_1}{z_2}$	$\frac{z_1 \cdot \overline{z_2}}{ z_2 ^2} = \frac{(x_1 x_2 + y_1 y_2) + i (x_2 y_1 - x_1 y_2)}{x_2^2 + y_2^2}$	$\frac{r_1}{r_2} \cdot \operatorname{cis}(\varphi_1 - \varphi_2)$
Inverse $(z \neq 0)$	$\frac{1}{z}$	$\frac{\overline{z}}{ z ^2} = \frac{x - iy}{x^2 + y^2}$	$\frac{1}{r} \cdot \operatorname{cis}(-\varphi)$
Potenzieren	z^n	$r^n \cdot (\cos(n\varphi) + i \sin(n\varphi)) = r^n \cdot \text{cis}$	(narphi)
Radizieren	$\sqrt[n]{z}$	$\sqrt[n]{r} \cdot \left(\cos\left(\frac{\varphi+2\pi k}{n}\right) + i\sin\left(\frac{\varphi+2\pi k}{n}\right)\right)$	$k=0,1,\ldots(n-1)$

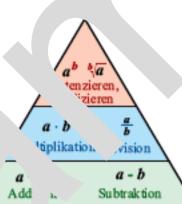
bitte ausschneiden

Algebra $\mathbf{2}$

2.1Rechengesetze


	Addition	Multiplikation	
Kommutativgesetz:	a+b=b+a	$a \cdot b = b \cdot a$	
Assoziativgesetz:	(a+b)+c = a+(b+c) = a+b+c	$(a \cdot b) \cdot c = a \cdot (b \cdot c) = a \cdot b \cdot c$	
Distributivgesetz:	$a \cdot (b \pm c) = a \cdot b \pm a \cdot c$		
Neutrales Element:	a+0=0+a=a	$a \cdot 1 = a = a$	
Inverses Element:	a + (-a) = (-a) + a = 0	$a \cdot (1) = (a \cdot a = 1)$	

2.2Reihenfolge der Operationen


Potenzieren, Radizieren vor Punktrechnung vor Str. ehnun,

Freiwillige Klammern:

•
$$2 \cdot 3^4 = 2 \cdot (3^4) = 162$$

•
$$4/2+3=(4/2)+3$$
 5

Obliga cische Klammern:

•
$$(-1)^2 = (-1) \cdot (-1) = +1$$

•
$$(2 \cdot 3)^4 = 6^4 = 1296$$

•
$$4/(2+3) = 4/5 = 0.8$$

•
$$(2+3) \cdot 4 = 5 \cdot 4 = 20$$

Äaz formungen .enzu

Gleichung a = b

$$a \pm c = '$$
 Addition / Subtraktion

$$a \cdot c = b \cdot c$$
 Multiplikation mit $c \neq 0$

$$\frac{a}{c} = \frac{b}{c}$$
 Division durch $c \neq 0$

$$\frac{1}{a} = \frac{1}{b}$$
 Kehrwert $(a, b \neq 0)$

Ungleichung a < b

$$a \pm c < b \pm c$$

$$\begin{cases} a \cdot c < b \cdot c & \text{falls } c > 0 \\ a \cdot c > b \cdot c & \text{falls } c < 0 \end{cases}$$

$$\begin{cases} \frac{a}{c} < \frac{b}{c} & \text{falls } c > 0 \\ \frac{a}{c} > \frac{b}{c} & \text{falls } c < 0 \end{cases}$$

$$\begin{cases} \frac{1}{a} < \frac{1}{b} & \text{falls } a \cdot b < 0 \\ \frac{1}{a} > \frac{1}{b} & \text{falls } a \cdot b > 0 \end{cases}$$

2.4 Termumformungen, Binomischer Satz

Binomische Formeln:

• 1. Bin. Formel:
$$(a+b)^2 = a^2 + 2ab + b^2$$

• 2. Bin. Formel:
$$(a-b)^2 = a^2 - 2ab + b^2$$

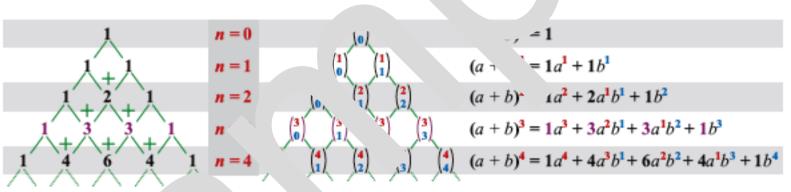
• 3. Bin. Formel:
$$(a+b)(a-b) = a^2 - b^2$$

a² + b² reell nicht zerlegbar.

•
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

•
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

•
$$a^n - b^n = (a - b) \cdot \sum_{k=0}^{n-1} a^{n-1-k} b^k$$


Binomischer Satz:

$$(a+b)^{n} = \underbrace{\binom{n}{0}}_{1} a^{n}b^{0} + \binom{n}{1} a^{n-1}b^{1} + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{n} a^{0}b^{n} \sum_{k=0}^{n} \binom{n}{k} e^{-k}b^{k}$$

Binomialkoeffizienten: $\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$ Fakultät: $n! = 1 \cdot \dots \cdot n$,

Für $(a-b)^n$ ist das Vorzeichen alternierend: $(a-b)^n = a^3 - c + 3ac + 3ac$

Binomischer Satz und pascalsches Zahlendr. `k:

2.5 Br chi.

₄tion: Subtraktion;

$$\frac{a}{b} \pm \frac{x}{y} = \frac{ay}{by} \pm \frac{xb}{yb} = \frac{ay \pm xb}{by} \qquad (b, y \neq 0)$$

- ▶ Hauptnenner: kgV(b, y),
- ▶ Brüche auf HN erweitern,
- ► Zähler addieren.

Multiplikation: $\frac{a}{b} \cdot \frac{x}{y} = \frac{a \cdot x}{b \cdot y}$ $(b, y \neq 0)$

 "Zähler mal Zähler, Nenner mal Nenner".

Division, Doppelbrüche:

$$\frac{\frac{a}{b}: \frac{x}{y} = \frac{\frac{a}{b}}{\frac{x}{y}} = \frac{a}{b} \cdot \frac{y}{x}}{(b, x, y \neq 0)}$$

Division durch Bruch = Multiplikation mit dessen Kehrwert.

bitte ausschneiden

$^{2.6}$ Potenzen

$$a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ Faktoren}}$$
 heisst r

Definition: $a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{\text{R-Norm}}$ heisst n-te Potenz von a. Bezeichnungen: $\begin{cases} a = \text{Basis} \\ n \in \mathbb{N} = \text{Exponent} \end{cases}$

Insbesondere:
$$a^1 = a$$
 und
$$\begin{cases} a^0 = 1, & \text{falls } a \neq 0 \\ 0^n = 0, & \text{falls } n > 0 \end{cases}$$

• Negative Exponenten
$$\Rightarrow$$
 Nenner: $a^{-n} = \frac{1}{a^n}$ $a \neq 0$

• Rationale Exponenten
$$\Rightarrow$$
 Wurzeln: $a^{\frac{m}{n}} = \sqrt[n]{a^m}$ $a \ge 0, n > 0$
speziell: $a^{\frac{1}{n}} = \sqrt[n]{a}$ Quad. vurzel: $a^{\frac{1}{n}} = a^{\frac{1}{n}}$

Potenzsätze

• Gleiche Basis:
$$a^n \cdot a^m = a^{n+m}$$

• Gleicher Exponent:
$$a^n \cdot b^n = (ab)^n$$

$$b \neq 0$$

• Doppelte Potenzen:
$$(a^n)^m = a^{n \cdot m} =$$

Logarithmen (siehe au 1 S. 1

$$\log_a(x) = \mathbf{b} \quad \Leftrightarrow \quad a^y = \mathbf{b}$$

$$a,x>0,\ a\neq 1$$

$$\bullet \begin{cases} \text{Multiplikation} \\ \text{Division} \end{cases}$$

$$\log_a(r) = \log_a(r) + \log_a(y)$$

$$\log_a(\tfrac{x}{y}) = \log_a(x) - \, \log_a(y)$$

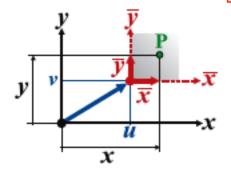
$$1 \quad _{a}(x^{y}) = / \cdot \log_{a}(x)$$

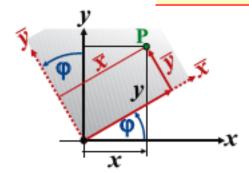
$$\log_b(x) = \frac{\log_b(x)}{\log_b(a)}$$

$$a > 0; a \neq 1$$

 $b > 0; b \neq 1$

speziell:
$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

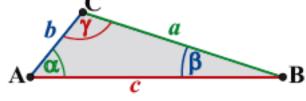

Translation & Kotation des Koordinatensystems 2.8


$$\overline{x} = x - u \\
\overline{y} = y - v$$

Rotation um φ :

$$\overline{x} = x\cos(\varphi) + y\sin(\varphi)$$

$$\overline{y} = -x\sin(\varphi) + y\cos(\varphi)$$



3 Planimetrie

3.1 Allgemeine Dreiecke

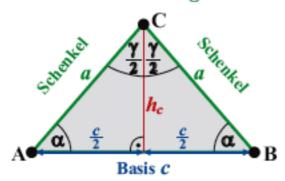
- Winkelsumme: $\alpha + \beta + \gamma = 180^{\circ}$
- Dreiecksungleichung: c < a + b

- Ähnlichkeit, Strahlensätze: Zwei Dreiecke sind ähnlich, wenn sie gleiche Winkel und / oder gleiche Seitenverhältnisse haben.
 - 1. Strahlensatz: $\frac{a}{b} = \frac{c}{d} = \frac{a+c}{b+d}$
 - 2. Strahlensatz: $\frac{a}{e} = \frac{a+c}{f}$

- Sinussatz: $\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)} = 2R$ wob $\alpha = \frac{1}{\sin(\alpha)}$ reisra
- Cosinussatz: $c^2 = a^2 + b^2 2ab \cos(\gamma)$ zyklisch:
- Fläche: $A_{\Delta} = \frac{1}{2} \left(\text{Grundseite} \cdot \text{ l\"ohe} \right) = \frac{b \cdot h}{2} = \frac{a \cdot h_a}{2}$
 - ▶ Zwei Seiten und Zw. chenw. \(\) l: $A_{\Delta} = \frac{\sqrt{c}}{2} \cdot \sin(\alpha)$ und zyklisch:
 - ▶ Drei Seiten (Heron) $\sqrt[s]{s} = \sqrt{s(s \cdot a)(s-b)(s-c)}$, wobei $s = \frac{1}{2}(a+b+c)$.
 - ▶ Drei Wielun, Tmkre, dius R: $A_{\Delta} = 2R^2 \cdot \sin{(\alpha)} \sin{(\beta)} \sin{(\gamma)}$

3.2 Re- ink. reiecke

hagoras: $c^2 = a^2 + b^2$


- Höhens' . $h_c^2 = p \cdot q$
- Kathetensatz (Satz von Euklid): $a^2 = c \cdot q$ oder $b^2 = c \cdot p$
- Ankathete (bzgl. α) bAnkathete (bzgl. α) a (bzgl. α)
- Trigonometrische Funktionen:

 $\sin(\alpha) = \frac{a}{c} \quad \cos(\alpha) = \frac{b}{c} \quad \tan(\alpha) = \frac{a}{b}$ (Siehe auch S. 17)

oitte ausschneiden

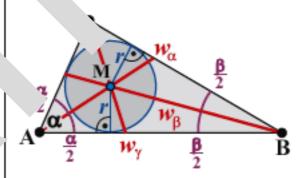
3.3Gleichschenklige und gleichseitige Dreiecke

Gleichschenkliges Dreieck

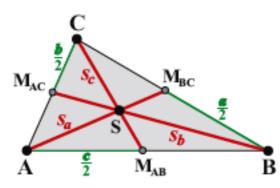
▶ Fläche: A =

► Umkreisradius: 1

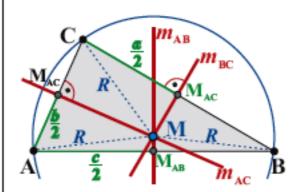
Gleichseitiges Dreieck


▶ Inkrej

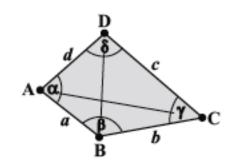
h_c halbiert die Basis c und den Winkel γ.


3.4Linien im Dreieck

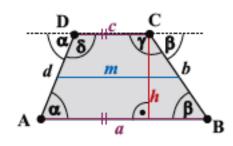
Höhen sind die Verbindungsstrecken von einem Eckpunkt zur gegenüberliegenden Seite (oder deren Verlängerung), welche zu dieser senkrecht stehen.


Winkelhalbic nde (W halbieren rkel de. Jeder Punkt i i einer H hat den angrenzenden A. nd. Die WH iten gle u reiden sich . Inkrei Littelpunkt.

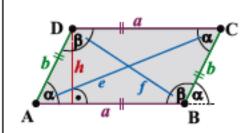
 $S\epsilon$ enhalbier rufen einem nkt elpunkt der ge-Ec seitenm schneiden sich __enden Seite. im Verhältnis 2:1 Ihr 5 aittpunkt ist der Schwerpur (M amittelpunkt) des Dreiecks (vg.



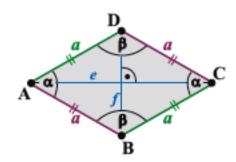
Mittelsenkrechte sind die Menge aller Punkte, welche von zwei Eckpunkten gleichen Abstand haben. Sie schneiden sich im Umkreismittelpunkt.


Vierecke 3.5

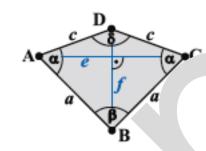
Allgemeines Viereck


$$\blacktriangleright \ \alpha + \beta + \gamma + \delta = 360^{\rm o}$$

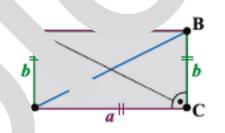
Trapez


$$\blacktriangleright A = \frac{a+c}{2} \cdot h = m \cdot h$$

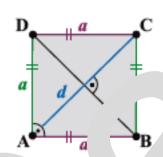
Parallelogramm


$$ightharpoonup A = (a - a) + \sin(a)$$

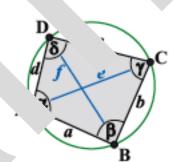
Rhombus (Raute)


$$A = \frac{e \cdot f}{2} = a^2 \cdot \sin(\alpha)$$

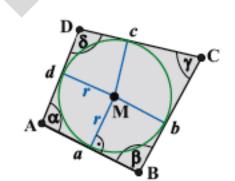
Drachenviereck


$$A = \frac{1}{2} = \frac{1}{2} \cdot \sin x$$

Recht


$$A = \sum_{a} -a \cdot \sin \left(-a \cdot b \right)$$

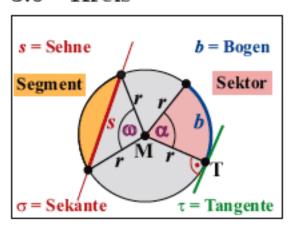
Quadrat


$$A = a^2$$

viereck

$$\blacktriangleright a \cdot c + b \cdot d = e \cdot f$$

ngentenviereck



$$ightharpoonup a+c=b+d$$

$$\blacktriangleright A = r \cdot \frac{a+b+c+d}{2}$$

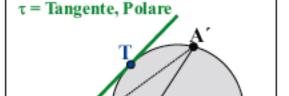
bitte ausschneiden

3.6 Kreis

Umfang

$$U=2\pi r$$

Bogenlänge


$$b = 2\pi r \cdot \frac{\alpha}{360^{\circ}}$$

Fläche

$$A = \pi r^2$$

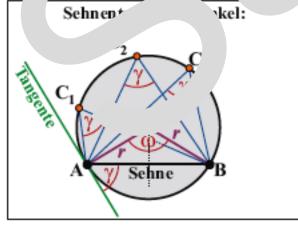
Sektor

$$A_{\mathrm{Sek}} = \pi r^2 \cdot \frac{\alpha}{360^{\circ}} = \frac{b \, r}{2}$$

Segment

$$A_{
m Seg} = \pi \, r^2 \quad rac{\omega}{
m Spo} \, - \, rac{1}{2} \,
ho \, \sin \ell \, r$$

Sehnensatz


$$\overline{PA} \cdot \overline{PA'} = \overline{^{2}}$$

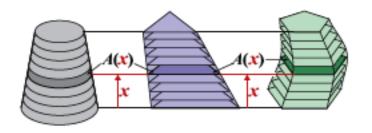
Sekantensatz

$$\overline{QP} \ \ \overline{\mathbf{Q}} \ \overline{\mathbf{Q}} = \overline{\mathbf{Q}} \overline{\mathbf{A}} \cdot \mathbf{Q} \quad \overline{\mathbf{Q}} = \overline{\mathbf{Q}} \mathbf{1}$$

- ▶ Kreisgleichung des Kreises K mit Mitte' Ankt L / v) u. vadius r:
 - Mittelpunktsform: $K: (x-v)^2 = r^2$
 - Koordinatenform: K: x' +Ax+L C=0
 - Tangente τ an K in T' / y_0) b. Polare τ an K in $Q(x_0 / y_0)$: $\tau: (x-u)(x_0-r) \cap (y-r)$?

Kr winkelsätze

- gleiche Peripheriewinkel γ
- Thaleskreis:


 C2
 C3
 B

 C4
- \blacktriangleright gleiche Peripheriewinkel $\gamma=90^{\rm o}$
- ► Zentriwinkel ω = 2 γ

Stereometrie 4

4.1Prinzip von Cavalieri

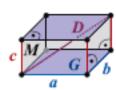
Zwei Körper sind volumengleich, wenn deren Schnittfläche A(x) in jeder Höhe z den gleichen Flächeninhalt haben.

4.2Prismen und Zylinder (Kongruente, parallele Grund- und Deckfläche)

Gerades Prisma

Schiefes Prisma

 \triangleright G = Grundfläche


M = Mantelfläche

 $\blacktriangleright h = \text{H\"ohe}$

- Vol: $\nabla \cdot \mathbf{n} : V = \mathcal{T} \cdot h$
- A = A + M▶ Oberfläc.

Quader

- A = 2(ab + a c + b c)
- $D = \sqrt{a^2 + b^2 + c^2}$

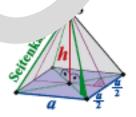
Würfel

- - $\sqrt{3}$, $d=a\sqrt{2}$

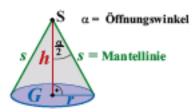
Zy. ¹er

- $V = \pi r^2 \cdot h$
- $A = 2 \cdot \pi r^2 + 2\pi r \cdot h$
- $M = 2\pi r \cdot h$

4.3Spitze Körrar

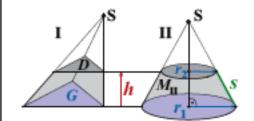

Gerade Pyrar .en > efe Py iden

 \triangleright G = Grundfläche M = Mantelfläche

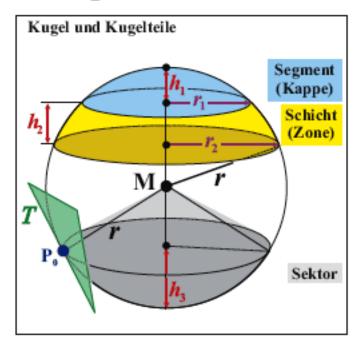

- $h = H\ddot{o}he$
- ▶ Volumen: $V = \frac{1}{3} \cdot G \cdot h$
- ▶ Oberfläche: A = G + M

C .e, quadi ische

Pyramide



Gerader Kreiskegel


- $V = \frac{1}{3} \pi r^2 \cdot h$
- $> s = \sqrt{h^2 + r^2}$

Pyramidenstumpf, Kegelstumpf

- $\blacktriangleright V_{\rm I} = \frac{h}{3} \left(G + \sqrt{GD} + D \right)$
- $ightharpoonup A = \pi r^2 + \pi r s, \quad M = \pi r s \quad
 ightharpoonup V_{\text{II}} = \frac{\pi h}{3} \left(r_1^2 + r_1 r_2 + r_2^2 \right)$
 - $\blacktriangleright M_{\rm II} = \pi \cdot s \cdot (r_1 + r_2)$

4.4 Kugel

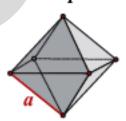
Volumen: $V = \frac{4}{3} \pi r^3$

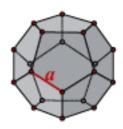
- ► Segment: $V = \frac{1}{3} \pi h_1^2 (3r h_1)$
- ► Schicht: $V = \frac{1}{6} \pi h_2 (3r_1^2 + 3r_2^2 + h_2^2)$
- ► Sektor: $V = \frac{2}{3} \pi r^2 h_3$

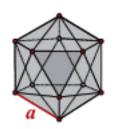
Oberfläche: $A = 4\pi r^2$

- ► Segment: $M = 2\pi r h_1$ (K pe, He e)
- ► Schicht: $M = r \frac{h_2}{2}$ (Z.)
- ► Sektor: $A = 2\pi r + \pi r_V$
- **Kugelgleichung** einer Kugel mit Mittelpunkt M(u / v / v) dius
 - Mittelpunktsform: $K: (x-u)^2 + (y-v)^2 + (v)^2 = r^2$
 - Koordinatenform: $K: x^2 + y^2 + z^2 + A$ By + C D = 0
 - \bullet Tangentialebene T an Kugel im Punk $P_0(x_0$, $\qquad /$ $z_0)$:

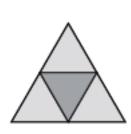
$$T: (x-u)(x_0-u)+(y-v)(y_0 - w)(z_0-w)=r^2$$

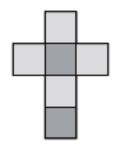

4.5 Polyeder und P'nisch Körper


Polyedersatz (Euler)

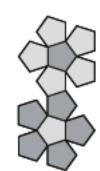

e+f=k+2 wobei: = Anz / Ec f= Anzahl Flächen, k= Anzahl Kanten.

Es / genau 5 reguläre nvey Körper:

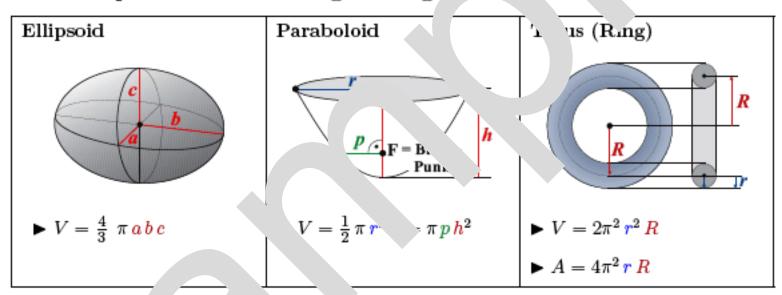

Tetraede. (Vierflächner)

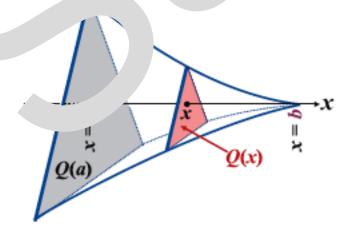

(Sechsflächner)

Oktaeder (Achtflächner)


Dodekaeder (Zwölfflächner)

Ikosaeder (Zwanzigflächner)





	Volumen V	Oberfläche A	Umkugelradius R	Inkugelradius r
Tetraeder	$\frac{\sqrt{2}}{12} a^3$	$\sqrt{3} a^2$	$\frac{\sqrt{6}}{4}$ a	$\frac{\sqrt{6}}{12} a$
Hexaeder	a^3	$6a^2$	$\frac{\sqrt{3}}{2}$ a	$\frac{1}{2}$ a
Oktaeder	$\frac{\sqrt{2}}{3} a^3$	$2\sqrt{3} a^2$	$\frac{\sqrt{2}}{2}$ a	$\frac{\sqrt{6}}{6}$ a
Dodekaeder	$\frac{15+7\sqrt{5}}{4} a^3$	$3\sqrt{5(5+2\sqrt{5})} a^2$	$\frac{(1+\sqrt{5})\sqrt{3}}{4}$ a	$\frac{4.4\sqrt{5}}{a}$
Ikosaeder	$\frac{5(3+\sqrt{5})}{12} a^3$	$5\sqrt{3} a^2$	$\sqrt{1+\sqrt{5}}$ a	$\frac{3+\sqrt{5})}{12}$ a

4.6 Körper mit runden Begrenzungsf

1.7 Volumen (es F) rpers mit Integralrechnung

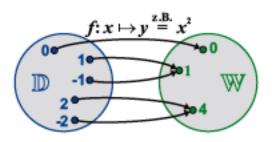
- $\bullet \quad V = \int_a^b Q(x) \, dx$
- Spezialfall Rotationsvolumen:
 Durch f(x) begrenztes Volumen,
 wenn diese um die x-Achse rotiert:

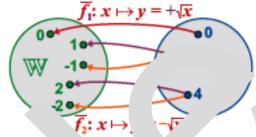
$$V_x = \pi \int_a^b (f(x))^2 dx$$
. Siehe S. 25.

Funktionen 5

Definition: Eine Funktion $f : \mathbb{D} \to \mathbb{W}$ ist eine Zu-Definitionsmenge) nach W (Bild, Wertemenge), welche jedem Element $x \in \mathbb{D}$ genau ein $y \in \mathbb{W}$ zuordnet: $f: x \mapsto y = f(x)$

Umkehrfunktion: $\overline{f}: \mathbb{W} \to \mathbb{D}$ macht die Funktion f

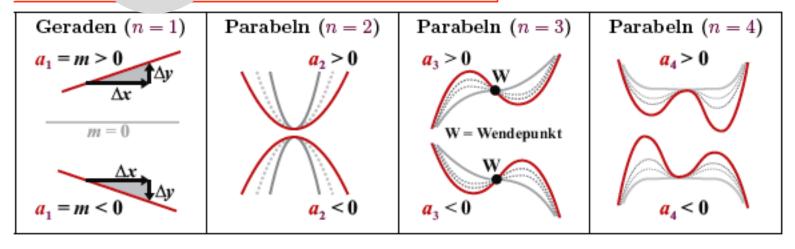

"rückgängig":
$$\overline{f}(f(x)) = x$$
 und $f(\overline{f}(y)) = y$


Damit eine auf einem Intervall definierte Funktion eindeutig umkehrbar ist, muss deren maximaler Definitionsbereich \mathbb{D}_f so eingeschränkt werden, dass f streng monoton wird.

Ermittlung der Umkehrfunktion(en):

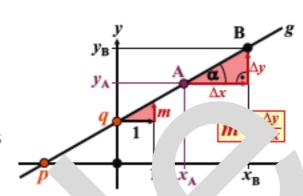
- Graphisch: Funktionsgraph an der Winkelhalbierenden y = x spiegeln.
- ▶ Algebraisch: y = f(x) nach x auflösen, anschliessend x und y vertauschen.

Tabelle von Funktionen und Umkehrfun¹

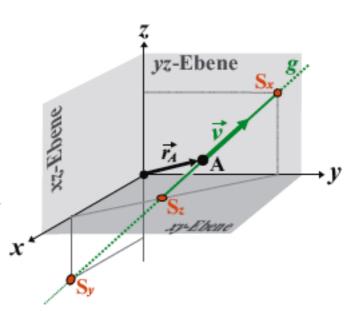

Definit. ¬bere. Meng aller erlaub. v-Wer ω

- V(x) V(x) 0 $\sqrt{g(x)}$ $g(x) \ge 0$

Funktion	y = f(x)	\mathbb{D}_f	\mathbb{W}_f	$y = \overline{f}(x)$
Kehrwert	$\frac{1}{x} = x^{-1}$	R\{r	k }	$\frac{1}{x} = x^{-1}$
Quadrat	x^2	V	$y \ge 0$	$\sqrt{x} = x^{\frac{1}{2}}$
Potenz	x^n	A	fa n gerade: $y \ge 0$ falls n un gerade: \mathbb{R}	$\sqrt[n]{x} = x^{\frac{1}{n}}$
Sinus	$\sin(x)$	7	[-1, 1]	$\arcsin(x)$
Cosinus	$\cos(x)$	Т	[-1, 1]	$\arccos(x)$
Tang	an(x)	$\mathbb{R}^{'} (n+\frac{1}{2}) , \ n \in \mathbb{Z}\}$	\mathbb{R}	$\arctan(x)$
Ey nential	a^x		y > 0	$\log_a(x)$


onen ("Parabeln n-ter Ordnung") 5.1omfunl

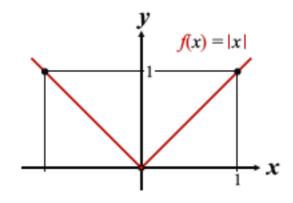
$$y = f(x) = a_n x^n + o$$
 $x^{n-1} + \dots + a_1 x + a_0 = \sum_{k=0}^n a_k x^k$ mit $n = \text{Grad}$, Ordnung. $(a_n \neq 0)$


5.2 Geraden, lineare Funktionen

- ▶ Normalform: $g: y = m \cdot x + q$
- ▶ Punkt-Steigungsform: $g: y = m \cdot (x x_A) + y_A$ mit $A(x_A / y_A) \in g$
 - Steigung: $m = \frac{\Delta y}{\Delta x} = \frac{y_B y_A}{x_B x_A} = \tan(\alpha)$
 - y-Achsenabschnitt: q.
- ▶ Achsenabschnittsform: $g: \frac{x}{p} + \frac{y}{q} = 1$ mit den Achsenabschnitten $p, q \neq 0$

Parallele Geraden	Senkrechte Geraden	\circ winke on g und h
g h	g h	h g
$g \parallel h \Leftrightarrow m_g = m_h$	g J $n_h = \frac{-1}{m_g}$	$\tan \left(= \left \frac{m_h - m_g}{1 + m_h \cdot m_g} \right \right $

- ▶ Parameter form: $\rightarrow \vec{r} = +t \cdot \vec{v}$
 - Richtung \mathcal{L} ktor: \mathcal{L} beliebig \mathcal{L} vektor in \mathcal{L} bung von g.
 - A fpunkt: Be oiger P akt A auf g.
 - Spr 'e: S₂ = Schnittpunkte von eine r Koordinatenebenen.
- ⇒ Ebenengle Jungen siehe S. 29.

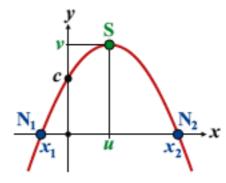


5.3 Betragsfunktion

$$|x| = \sqrt{x^2} = \begin{cases} x & \text{falls } x \ge 0 \\ -x & \text{falls } x < 0 \end{cases}$$

,,macht x positiv".

|x| ist in x=0 stetig, aber nicht differenzierbar.



5.4 Parabeln

► Normalform:

$p: y = a x^2 + b x + c$

- Öffnung a:
 - a < 0: nach unten geöffnet
 - a > 0: nach oben geöffnet
 - a = 1: Normalparabel.
- bx: Linearer Term.
- c: y-Achsenabschnitt.

2n

n = 3

► Scheitelpunktsform:

$$p: y = a(x-u)^2 + v$$

- Öffnung a:
 Siehe Normalform.
- Scheitelpunkt S(u / v) mit $u = -\frac{b}{2a}$; $v = \frac{-b^2 + 4ac}{a}$

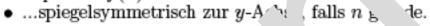
=2

n = 1

5.5 Potenzfunktionen

Potenzfunktionen: $f(x) = x^n$ $n \in \mathbb{Q}$

n = 0 Konstante Funktion.


0 < n < 1 Wurzelfunktionen.

n=1 Lineare Funktion.

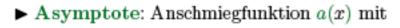
 $n \in \mathbb{N}$; n > 1 Parabeln n-ter Ordnung.

 $n \in \mathbb{N}$; n < 0 Hyperbeln n-ter Ordnung.

Der Graph von $f(x) = x^n$ ist...

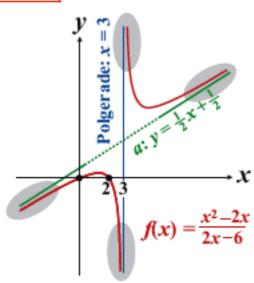
- ullet ...punktsymmetrisch zum Ursp. ${}^{\backprime}$, falls n un. ${}^{\backprime}$ de.
- ⇒ Ableitungen und Stam^{*} onen s_k S. 24.

5.6 Gebrochem ion e Fortionen


Eine rochenrationale nktio f(x) ist eine Funktion von folgender Bauart:

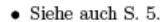
$$\frac{U}{V(x)} = \frac{Z\ddot{s}^{1}}{\text{inerpolynon}} = \frac{a_{n} x^{n} + a_{n-1} x^{n-1} + \dots + a_{1} x + a_{0}}{b_{m} x^{m} + b_{m-1} x^{m-1} + \dots + b_{1} x + b_{0}}$$

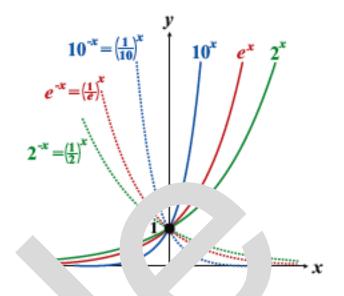
 $\mathbf{n}, \mathbf{m} \in \mathbb{N}_0$ $\mathbf{a}_n, \mathbf{b}_m \neq 0$


▶ Polgerad n (ver de Asymptoten): $y \to \pm \infty$ x_0 heisst n wenn

 $y = \lim_{x \to x_0} f(x) = \pm \infty$ (,,echte" Division durch Null).

$$\lim_{x \to \pm \infty} (f(x) - a(x)) = 0$$


Für n = m + 1 ist die Asymptote eine schiefe Gerade.


5.7 Exponential- und Logarithmusfunktionen

- ▶ Exponential funktion: $y = f(x) = a^x$ a > 0
 - Eulersche Zahl: $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n \approx 2.718...$
 - Wachstums- oder Zerfallsprozesse:

$$N(t) = N_0 \cdot a^t$$
 wobei:
 $t = \text{Zeit}, \quad N_0 = \text{Startwert},$
 $N(t) = \text{Population zur Zeit } t,$
 $a = 1 + \frac{p}{100}$ = Wachstumsfaktor mit
 $p = \text{Wachstum in \% pro Zeiteinheit.}$

⇒ Ableitungen und Stammfunktionen siehe S. 24.

► Logarithmusfunktionen (Logarithmens, esiehe S):

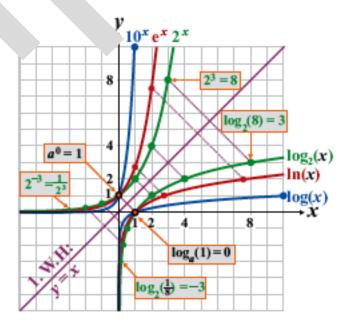
$$\overline{f}(x) = \log_a(x) \qquad \begin{array}{c} x > 0 \\ a > 0; \ a \neq 1 \end{array}$$

$$\overline{f}(x) = \log_a(x)$$
 ist Umkehrfunktic $(x) = a^x$:

• Zehnerlogarithmus:

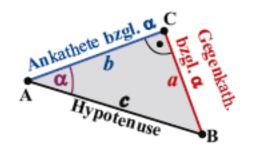
$$\overline{f}(x) = \log_{10}(x) = \log(x)$$

$$\log(10^x) = \log(x) = (x > 0)$$

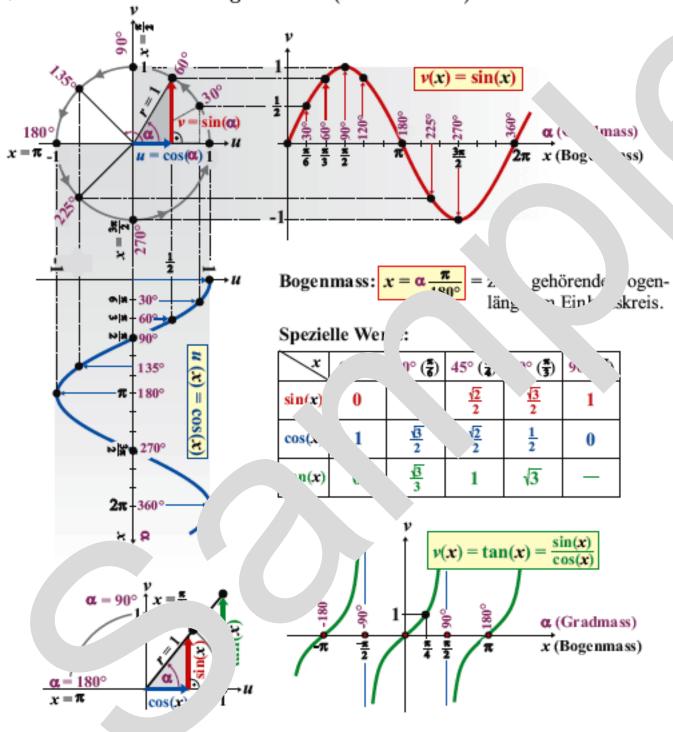

• Natürliche Logarit' A.

$$\frac{1}{\ln(e^x) = x} = \frac{\ln(x)}{e^{\ln(x)}} \qquad x \quad (x > 0)$$

• B' rithmus.


$$\frac{f(x) = \log_{\delta}}{\log_2(2^x)} \quad \frac{1 = \operatorname{lb}(x)}{x} = x \quad (x > 0)$$

⇒ Ableitungen und Stammfunktionen siehe S. 24.

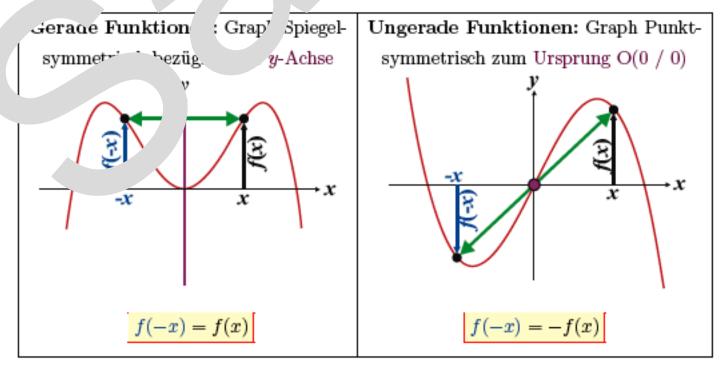


5.8 Trigonometrische Funktionen

▶ Definition im rechtwinkligen Dreieck: 0 < α < 90°</p>

▶ Definition für beliebige Winkel (Einheitskreis)

► Eigenschaften:


- Periodizität: 360° (= 2π im Bogenmass) für sin und cos; 180° (= π) für tan: $\sin(x + n \cdot 2\pi) = \sin(x)$ $\cos(x + n \cdot 2\pi) = \cos(x)$ $\tan(x + n \cdot \pi) = \tan(x), n \in \mathbb{Z}$
- $\begin{array}{ll} \bullet \ \mathbb{D}_{\sin} = \mathbb{D}_{\cos} = \mathbb{R}, & \mathbb{D}_{\tan} = \mathbb{R} \backslash \{ (\frac{\pi}{2} + n\pi) \,, \ n \in \mathbb{Z} \}. \\ \mathbb{W}_{\sin} = \mathbb{W}_{\cos} = [-1, 1], & \mathbb{W}_{\tan} = \mathbb{R} \end{array}$
- Umkehrfunktionen: arcsin(x), arccos(x) und arctan(x) (vgl. S. 13)

Beziehungen und Eigenschaften trigonometrischer Funktionen

$\tan\left(x\right) = \frac{\sin\left(x\right)}{\cos\left(x\right)}$	$\sin^2(x) + \cos^2(x) = 1$	$\frac{1}{\cos^2\left(\mathbf{x}\right)} = 1 + \tan^2\left(\mathbf{x}\right)$
$\sin\left(-\frac{x}{x}\right) = -\sin\left(\frac{x}{x}\right)$	$\cos\left(-\frac{x}{x}\right) = \cos\left(\frac{x}{x}\right)$	$\tan\left(-\frac{x}{x}\right) = -\tan\left(\frac{x}{x}\right)$
$\sin\left(\pi - \mathbf{x}\right) = \sin\left(\mathbf{x}\right)$	$\cos\left(\pi - \mathbf{x}\right) = -\cos\left(\mathbf{x}\right)$	$\tan\left(\pi - \frac{x}{x}\right) = -\tan\left(\frac{x}{x}\right)$
$\sin\left(\frac{\pi}{2} \pm \frac{x}{2}\right) = \cos\left(\frac{x}{2}\right)$	$\cos\left(\frac{\pi}{2} \pm \mathbf{z}\right) = \mp \sin\left(\mathbf{z}\right)$	$\tan\left(\frac{\pi}{2} \pm \mathbf{x}\right) = \mp \frac{1}{\tan\left(\mathbf{x}\right)}$
$\sin\left(2\mathbf{x}\right) = 2\sin\left(\mathbf{x}\right)\cos\left(\mathbf{x}\right)$	$\cos(2\mathbf{x}) = \begin{cases} 2\cos^2(\mathbf{x}) - 1\\ \cos^2(\mathbf{x}) - \sin^2(\mathbf{x})\\ 1 - 2\sin^2(\mathbf{x}) \end{cases}$	$\tan\left(\frac{\mathbf{c}}{\mathbf{c}}\right) = \frac{2}{\epsilon^2} \frac{\mathbf{c}(\mathbf{r})}{\epsilon^2}$
$\sin^2\left(\frac{\mathbf{z}}{2}\right) = \frac{1 - \cos\left(\mathbf{z}\right)}{2}$	$\cos^2\left(\frac{\mathbf{x}}{2}\right) = \frac{1 + \cos\left(\mathbf{x}\right)}{2}$	$ \eta^2 \left(\frac{x}{2}\right) \frac{1 - \cos t}{2 \left(\frac{x}{2}\right)} $
$\sin\left(\mathbf{x} \pm y\right) = \sin\left(\mathbf{x}\right)\cos\left(y\right)$	$\pm \cos(x)\sin(y)$ ta $x \pm y$	$\frac{\tan\left(x\right)}{\tan\left(x\right)}, \frac{\ln\left(y\right)}{\ln\left(y\right)}$
$\cos(x \pm y) = \cos(x)\cos(y)$	$\mp \sin(x)\sin(y)$	
$\sin\left(\mathbf{x}\right) + \sin\left(y\right) = 2\sin\left(\frac{\mathbf{x} + \mathbf{y}}{2}\right)$	$\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$	$r = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$
$\cos\left(x\right) + \cos\left(y\right) = 2\cos\left(\frac{x}{2}\right)$	$\frac{+y}{2}$ os $\left(\frac{x}{2}\right)$ cos $\left(\frac{x}{2}\right)$ cos $\left(\frac{x}{2}\right)$	$y = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$

 \Rightarrow Ableitungen und Stammfu. onen siehe . 4.

5.9 Symm rie

Gleichungen 6

6.1Fundamentalsatz der Algebra

In \mathbb{R} kann jedes Polynom n-ten Grades als Produkt von $k \leq n$ Linearfaktoren und nicht weiter zerlegbaren quadratischen Faktoren q(x), welche nicht Null werden können, dargestellt werden.

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0 \quad \Leftrightarrow \quad a_n \cdot (x - x_1) \cdot (x - x_2) \cdot \ldots \cdot (x - x_k) \cdot q(x) = 0$$

In der faktorisierten Form können die Lösungen x_1, x_2, \ldots, x_k abgelesen werden.

6.2Quadratische Gleichungen

 $ax^2 + bx + c = 0$ $a, b, c \in \mathbb{R}, a \neq 0$

Satz von Vieta:

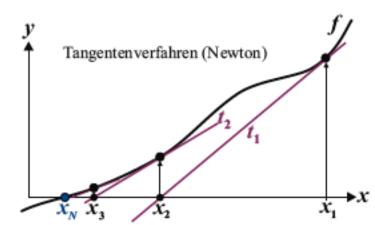
Diskriminante: $D = b^2 - 4ac$

Produkt der Lösungen:

Lösungen: $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $D \ge 0$ Summe der sunge.

6.3Polynomgleichungen dritten öher

$$ax^{3} + bx^{2} + cx + d = 0$$
 $a, b, c, d \in \mathbb{R}, a \neq 0$


Satz: Division durch $a \neq 0$ führt au' = also $x^3 + \iota + c'x$, $\dot{} = 0$. Wenn es eine ganzzahlige Lösung x_1 gibt, dann ist liese Te. von d'. Finde Lösung x_1 durch Einsetzen (Probieren) der Teiler von d' und a. Pre die Gle. Aug anschliessend durch $(x - x_1)$.

6.4Numerische erfab

Gesucht ist die Nullste. N(x = 0) v = (x). Ausgehend von einem Startwert x_1 , konstruiere eine re' ... mierte Zahle olge x_1 x_2 , x_3 ,... mit Grenzwert x_N .

nnenverfe Pegu. si) $(1 - f(x_1)) d P_2(x_2 / f(x_2))$ mit $f(x_1) \cdot f(x_2) < 0$. Dann:

$$x_{n+1} = x - f(x) \xrightarrow{f(x_2) - f(x_1)} \xrightarrow{n \to \infty} x_N$$

► Tangentenverfahren von Newton

Wähle $P_1(x_1 / f(x_1))$ mit $f'(x_1) \neq 0$. Dann:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \xrightarrow[n \to \infty]{} x_N$$
 (die Folge ist nicht notwendigerweise konvergent.)

7 Folgen und Reihen

Definition: Eine **Zahlenfolge** a_1, a_2, a_3, \ldots ist eine **Funktion** $a : \mathbb{N} \to \mathbb{R}, k \mapsto a_k$.

- Explizite Funktionsvorschrift: $a_k = \{\text{Formel mit } k\}$
- Rekursive Darstellung: $a_{k+1} = \{\text{Formel mit } a_k, a_{k-1},... \}$ sowie Startwert a_1 .

Definition: Eine Reihe $s_1 = a_1, \ s_2 = a_1 + a_2, \ s_3 = a_1 + a_2 + a_3, \dots$ $s_n = \sum_{k=1}^n a_k$

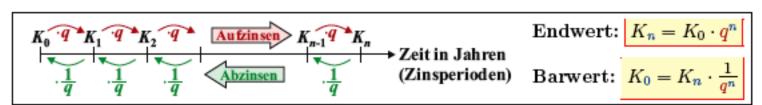
ist die Folge der Teilsummen einer gegebenen Folge $\{a_k\}_{k\in \mathcal{S}}$

7.1 Arithmetische Folgen (AF) und arit vetisch Rein (R)

	Rekursionsformel	Explizite Formel
Folge	$a_{k+1} = a_k + \frac{d}{d}$	$a_k = a_1 + (k-1) \cdot d$
Reihe	$s_{n+1} = s_n + \frac{a_{n+1}}{a_{n+1}}$	$s_n = \frac{n}{2} \cdot (a_1 + e) = \frac{n}{2} \cdot (2 - (n - d))$

7.2 Geometrische Folgen (GF` ud ge netris de Reihen (GR)

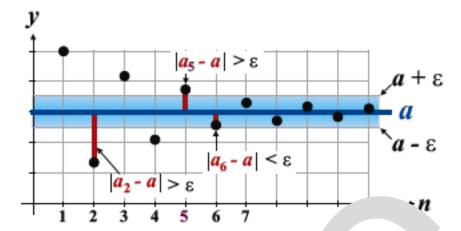
	Rekursionsformel E dizite vel
Folge	$a_{k+1} = a_k \cdot q \qquad \qquad \underbrace{a_k} \qquad \underbrace{a_k \cdot q^{k-1}}$
Reihe	$s_{n+1} = s_n + a_{n+1}$ $s_n = a_1$ $-\frac{q^n}{q}$ $q \neq 1$, $s_n = n \cdot a_1$ für $q = 1$
	$=\lim_{n\to\infty} s_n = rac{a_1}{1-q}$ falls $ q <1$ (unendliche GR)


7.º Weiter Re' en

$$s_n = \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} - + \dots$$
 (Harmonische Reihe)

$$\sum_{k=1}^{n} k = \frac{1}{2} n \, (+1) \qquad s_n = \sum_{k=1}^{n} k^2 = \frac{n}{6} \, (n+1) (2n+1) \qquad s_n = \sum_{k=1}^{n} k^3 = \left(\frac{1}{2} \, n \, (n+1) \right)^2$$

7.4 Verzinsung mit Zinseszins:


Startkaptial K_0 , Laufzeit n Jahre:

7.5 Grenzwerte

Definition: Eine Folge a_n heisst konvergent mit Grenzwert $a = \lim_{n \to \infty} a_n$, wenn es zu jeder beliebig kleinen Zahl $\varepsilon > 0$ einen Index $N \in \mathbb{N}$ gibt, so dass für alle n > N gilt: $|a_n - a| < \varepsilon$

Für (beliebig) grosse n wird der Abstand von a_n zum Grenzwert a beliebig klein (kleiner als jedes $\varepsilon > 0$).

- Folgen ohne Grenzwert oder solche mit $\lim_{n\to\infty} a_n = \pm \infty$ heis 'n diverge t
- Nicht definiert sind: $\frac{0}{0}$, $\frac{(\pm \infty)}{(\pm \infty)}$, $0 \cdot (\pm \infty)$ und $\gamma \infty$
- ▶ Grenzwertsätze: Falls $a = \lim_{n \to \infty} a_n$ und $b = \lim_{n \to \infty} b_n$ existitities
 - $\oint_{n\to\infty} \left(\frac{a_n \pm b_n}{a} \right) = \frac{a}{a} \pm b$

 $\bullet \quad \lim_{n \to \infty} (c \cdot \mathbf{a}) = c \cdot \mathbf{a}$

 $\oint \lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$

- $\lim \frac{a_n}{b_n} = \int \text{falls } b \neq 0$
- \Rightarrow Entsprechende Sätze gelten auch für Genzwerte f(x).
- ► Grenzwerte von Exponentia. tionen: $a^x = \begin{cases} 0, & \text{falls } -1 < a < 1 \\ 1, & \text{falls } a = 1 \\ \infty, & \text{falls } a > 1 \end{cases}$
- ► Grenzwerte von geb ... tiona. Funktionen:

$$\lim_{x \to -\infty} \frac{a_{-\infty}^{n} + a_{n-1}}{m \cdot x_{-}^{n} + b_{m-1}} \frac{a_{m-1}}{x^{m-1}} \frac{a_{m-1}}{x_{-}^{n} + b_{m-1}} \frac{a_{0}}{x_{-}^{n} + b_{0}} = \begin{cases} 0, & \text{falls } n < m \\ \frac{a_{n}}{b_{m}}, & \text{falls } n = m \\ \pm \infty, & \text{falls } n > m \end{cases}$$

- ▶1 vir _gel:
 - Exponentielles W stum ist stärker als Potenzwachstum: $\lim_{x \to \infty} x^n \cdot e^{-x} = 0$
 - Potenzwachstum ist stärker als logarithmisches Wachstum: $\lim_{x\to\infty} \frac{\ln(x)}{x^n} = 0$ für n > 0.
- ▶ Regel von de l'Hôpital: Gilt $\lim_{x \to x_0} f(x) = 0$ (oder ∞) und $\lim_{x \to x_0} g(x) = 0$ (oder ∞), dann:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$
 Bsp:
$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = 1$$

7.6 Mittelwerte

Gegeben seien n verschiedene Werte $x_1, x_2, ..., x_n$.

- Ungewichteter arithmetischer Mittelwert: $\overline{x}_{A} = \frac{x_1 + x_2 + ... + x_n}{n}$ (vgl. S. 33)
- Gewichteter arithmetischer Mittelwert: $\overline{x}_{\text{A}} = \frac{p_1 \, x_1 + p_2 \, x_2 + \ldots + p_n \, x_n}{p_1 + p_2 + \ldots + p_n}$

 $p_1, p_2, ..., p_n$ bezeichnen die Gewichte (relative Häufigkeiten) der Werte $x_1, x_2, ..., x_n$.

- Quadratischer Mittelwert: $\overline{x}_{Q} = \sqrt{\frac{x_1^2 + x_2^2 + ... + x_n^2}{n}}$
- Geometrischer Mittelwert: $\overline{x}_G = \sqrt[n]{x_1 \cdot x_2 \cdot \dots}$
- Harmonischer Mittelwert: $\overline{x}_{H} = n \cdot \left(\frac{1}{x_{1}} + \frac{1}{x_{2}} + \dots \right)^{-1}$
- Ungleichung: $\overline{x}_{\rm H} \leq \overline{x}_{\rm G} \leq \overline{x}_{\rm A} \leq \overline{x}_{\rm Q}$ gilt, falls $x \geq 0$ 16. '9 $k = 2, \ldots, n$.

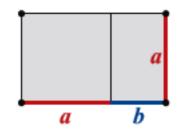
7.7 Harmonische Teilung, Gebauer & nitt

Unter dem Goldenen Schnitt Φ verstel man da vrmom.

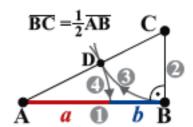
Teilungsverhältnis $\Phi = \frac{a}{b} = \frac{a+b}{a}$ Paraus folge

$$\Phi^2 - \Phi - 1 = 0 \quad \Rightarrow \quad \Phi = \qquad \frac{\sqrt{5}}{\overline{\Phi}} = \begin{cases} \frac{9}{\overline{\Phi}} & 1.618... \\ \frac{1.618...}{\overline{\Phi}} & 0.618... \end{cases}$$

Eigenschaften:


•
$$\overline{\Phi} = -\frac{1}{\Phi}$$

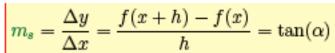
 ϵ irrational d hat ϵ ch folgende Darstellungen:


$$\Phi = \sqrt{1 + }$$
 ...

$$\Phi = 1 + \frac{1}{1 + \frac{1}{1 + \dots}}$$

Harmonisches Rechteck:

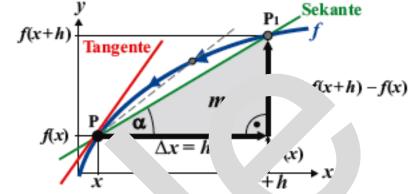
Harmonische Teilung der Strecke \overline{AB} :



7.8 Vollst' dige Induktion

Bewe. $_{\sim}$ en für Aussagen \mathbb{A}_n über natürliche Zahlen.

- (I) Verankerung: Überprüfe A₁. (Anstatt n = 1 kann ein anderer Startwert gewählt werden, der Beweis gilt dann ab dieser Zahl.)
- (II) Vererbung (Schritt von n nach n + 1):
 Zeige rekursiv, dass A_{n+1} korrekt ist, unter der Voraussetzung, dass A_n stimmt.


Voraussetzung: Gegeben sei eine stetige Funktion $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto y = f(x)$.

Differentialrechnung

8

Tangentensteigung
 Differentialquotient,
 Lokale Änderungsrate (Steigung)
 von f in P(x / f(x)),
 Definition der 1. Ableitung:

$$m_t = f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

8.1 Ableitungsregeln:

Seien f(x), u(x) und v(x) stetige Funktionen $d c e_{\lambda}$ Vonsta. Dann:

- ► Additive Konstante: f(x) = u(x)f'(x) = u'(x)
- Produk rel $f(x, u(x) \cdot v(x))$ $f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$
- ▶ Multiplikative Konst.: f(x) = c. $f'(x) = c \cdot u'(x)$
- ▶ Quentenregel $f(x) = \frac{u(x)}{v(x)}$ $f'(x) = \frac{u'(x) \cdot v(x) u(x) \cdot v'(x)}{(v(x))^2}$
- ► Kettenregel f(x) = u(v(x)) $f'(x) = u'(v) \cdot v'(x) = \frac{du}{dv} \cdot \frac{dv}{dx}$

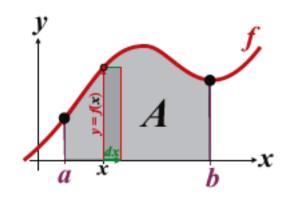
"Äussere Ableitung mal innere Ableitung"

8.2 angunger pezieller Punkte:

		f	f'	f"	f‴
Nullstelle	$N(x_N / 0)$	$f(x_N)=0$	-	-	-
Hochpunkt	$H(x_H / f(x_H))$		$f'(x_H) \stackrel{\bigstar}{=} 0$	$f''(x_H) \stackrel{\blacklozenge}{<} 0$	-
Tiefpunkt	$\mathrm{T}(x_T \ / \ f(x_T))$		$f'(x_T) \stackrel{\bigstar}{=} 0$	$f''(x_T) \stackrel{\blacklozenge}{>} 0$	-
Sattelpunkt Terrassenp.	$S(x_S / f(x_S))$		$f'(\mathbf{x_S}) \stackrel{\bigstar}{=} 0$	$f''(x_S) \stackrel{\bigstar}{=} 0$	$f'''(x_S) \neq 0$
Wendepunkt	$W(x_W / f(x_W))$		-	$f''(x_W) \stackrel{\bigstar}{=} 0$	$f'''(x_W) \stackrel{\blacklozenge}{\neq} 0$

- \bigstar = notwendige Bedingung,
- (★ + ♦) = hinreichende Bedingung.

8.3 Ableitungen und Stammfunktionen:


Stammfunktion $F(x)$	Funktion $f(x)$	Ableitung $f'(x)$
$\frac{\underline{x}^{n+1}}{n+1} [n \neq -1]$	x^n	$n x^{n-1}$
$\ln x $	$\frac{1}{x} = x^{-1}$	$-\frac{1}{x^2} = -x^{-2}$
$\frac{2}{3} x^{\frac{3}{2}}$	$\sqrt{x} = x^{\frac{1}{2}}$	$\frac{1}{2\sqrt{x}}$
e^x	$e^{\mathbf{r}}$	
$x \cdot (\ln x - 1)$	$\ln x $	$=x^{-1}$
$\frac{1}{\ln(a)} \cdot a^{x}$	a ^z	a , , , , ,)
$\frac{x}{\ln(a)}$ · $(\ln x -1)$	$\log_a x $	$\overline{x \cdot \ln}(\omega)$
Beachte: Variable \boldsymbol{x} in Bo	ogenmass!	
$-\cos(\frac{x}{x})$	$\sin(x)$	$\cos(\frac{x}{x})$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$-\ln\left(\mid\cos(x)\mid\right)$	4N(2)	$\frac{1}{\cos^2(\boldsymbol{x})} = 1 + \tan^2(\boldsymbol{x})$
$x \arcsin(x) + \sqrt{1-x^2}$	resin(x)	$\frac{1}{\sqrt{1-x^2}}$
$x \arccos(x) - \sqrt{1-x^2}$	a ¬(x)	$-\frac{1}{\sqrt{1-x^2}}$
$\frac{\mathbf{x}}{\arctan(\mathbf{x})} - \frac{\ln(\mathbf{x}^2+1)}{2}$	arctan	$\frac{1}{x^2+1}$

9 Trtegr reconu

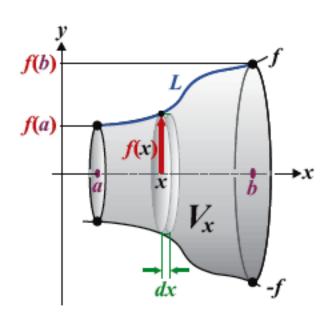
Definition: F(x) hei Star Afunktion von f(x), wenn F'(x) = f(x) gilt. Zwei verschiedene Stammfur $F_1(x)$ at $F_2(x)$ von f(x) unterscheiden sich um höchstens eine additive Koper $F_2(x)$ at $F_1(x) + C$. Die Konstante C heisst Integrationskonstante.

- Unbestime es Integral = Menge aller Stammfunktion: $\int f(x) dx = \{F(x) + C \mid C \in \mathbb{R}\}$
- Bestimmtes Integral, Hauptsatz der Differential- und Integralrechnung:

$$A = \int_{a}^{b} f(x) dx = F(b) - F(a) = [F(x)]_{a}^{b}$$

A = Fläche unter f zwischen den Integrationsgrenzen x = a und x = b, wenn f zwischen a und b keine Nullstellen hat.

9.1 Integrationsregeln


- ▶ Konstantenregel: $\int_{a}^{b} (c \cdot f(x)) dx = c \cdot \int_{a}^{b} f(x) dx$
- ▶ Summenregel: $\int_{a}^{b} (u(x) \pm v(x)) dx = \int_{a}^{b} u(x) dx \pm \int_{a}^{b} v(x) dx$
- ▶ Orientierung des Integrals: $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$
- ▶ Änderung der Integrationsgrenzen: $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{c} f(x) dx$
- ▶ Partielle Integration: $\int\limits_a^b u(x) \cdot v'(x) \, dx = \left[\, u(x) \cdot v(x) \, \right] \int\limits_a^b u'(x) \quad (x) \, dx$
- Substitutionsregel: Es sei f(x) = u(v(x)) kettete U(v) bezeichne eine Stammfunktion der äusseren Funktion $\int_a^b u(v(x), v(x)) dx$ $\int_a^v u(v) dv = [U(v)]_{v(a)}^{v(b)}$

9.2 Rotationsvolur and L enlänge

• Drehung um x- chse: = = $(f(x))^2 dx$ rallgemeinerung siel S. 12.

The set $V_y = \pi \int_{f(a)}^{f(b)} (\overline{f}(y))^2 dy$ y = f(x) streng resoton. $x = \overline{f}(x)$ ist. As an analysis of the set of the set

• Bogenlänge: $L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$

9.3 Potenzreihen, Taylor-Polynome

▶ Taylorpolynom $T_n(x)$ = Approximation einer Funktion f(x) and der Stelle x_0 durch eine ganzrationale Funktion (Polynomfunktion) n-ten Grades:

$$T_n(x) = \sum_{k=0}^n \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k$$
, wobei $f^{(k)}(x)$ für die k -te Ableitung steht. Ausführlich:

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \ldots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n$$

Fehler (Restglied):
$$R_n(x) = f(x) - T_n(x) = \frac{(x-x_0)^{n+1}}{(n+1)!} f^{(n+1)}(x_0 + \alpha(x-x_0)), \quad 0 < \alpha < 1$$

▶ Potenzreihenentwicklungen:

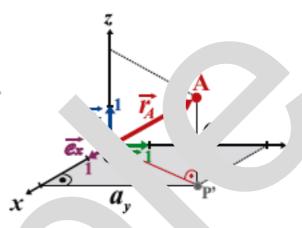
Term	Potenzreihenentwicklung	'tig t
$(1+\frac{x}{n})^n$	$\underbrace{\binom{n}{0}}_{1} + \binom{n}{1} \mathbf{x} + \binom{n}{2} \mathbf{x}^{2} + \binom{n}{3} \mathbf{x}^{3} + \dots$	$n \in \mathbb{N}, < 1$
$\frac{1}{1+x}$	$1-x+x^2-x^3\pm\ldots$	x 1
$\sqrt{1+x}$	$1 + \frac{1}{2} \mathbf{x} - \frac{1}{2 \cdot 4} \mathbf{x}^2 + \frac{1 \cdot 3}{2 \cdot 4 \cdot 6} \mathbf{z} - \frac{5}{2 \cdot 4} \mathbf{x}^4 \pm \mathbf{z}$	< 1
e^{x}	$1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}r^2$ 4 +	\mathbb{R}
$\ln(x)$	$(\boldsymbol{x}-1)-\frac{1}{2}(\boldsymbol{x})^2+\frac{1}{3}(\boldsymbol{x}-1)^3+\cdots$	$0 < x \le 2$
$\sin(x)$	$x-\frac{1}{3!}x^3+\frac{1}{2}x^5-\frac{7}{2}+\ldots$	$\pmb{x} \in \mathbb{R}$
$\cos(x)$	$1 - \left(\frac{x^2 + \frac{1}{2}}{2} \right) \frac{1}{2} \frac{x^6}{2} = \dots$	$x \in \mathbb{R}$
	$x + \frac{4}{3}x^3$ $\frac{2}{15}x^5 - \hat{315}x^7 + \dots$	$ x < \frac{\pi}{2}$
$\arcsin(x)$	$\frac{1}{2 \cdot 3} \qquad \qquad \underbrace{{4 \cdot 5}} x^5}_{} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7} x^7 + \dots$	$ x \le 1$
	$x-$; $3+\frac{1}{5}x^5-\frac{1}{7}x^7\pm\ldots$	$ x \le 1$

10 Vektorgeometrie

Definition: Ein Vektor \vec{r}_A beschreibt eine **Translation (Verschiebung)**. Vektoren haben eine Länge (Betrag) und eine Orientierung (Richtung). Vektoren dürfen beliebig parallel verschoben werden, haben also keinen fix vorgegebenen Anfangspunkt.

► Einheitsvektoren:

$$\vec{e_x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \vec{e_y} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ \vec{e_z} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

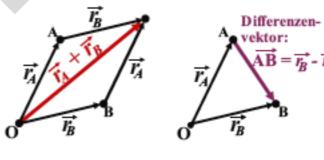

▶ Linearkombination: Jeder Dreidimensionale Vektor

 r_A

lässt sich als Linearkombination von \vec{e}_x , \vec{e}_y , \vec{e}_z

schreiben:
$$\vec{r}_A = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = a_x \, \vec{e}_x \, + \, a_y \, \vec{e}_y \, + \, a_z \, \vec{e}_z.$$

 a_x , a_y , a_z heissen Komponenten von \vec{r}_A .



- ▶ Ortsvektor von $\mathbf{A}(a_x, a_y, a_z)$: $\vec{r}_A = \overrightarrow{OA} = \begin{pmatrix} a_z \\ a_z \end{pmatrix}$ Vekto. Prung zum Punkt \mathbf{A} .
- ▶ Betrag, Länge: $|\vec{r_A}| = r_A = \overline{OA}$ $\sqrt{a_x^2}$ $\sqrt[2]{c_x^2 + a_z^2}$

► Addition, Subtraktion:

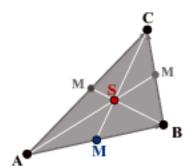
$$\vec{r}_A \pm \vec{r}_B = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \pm \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_x \pm b_x \\ b_y \\ a_z \end{pmatrix}$$

Diff ektor = Or vektor s Endp tes Minus Ortsvekto s Ar agspunktes.

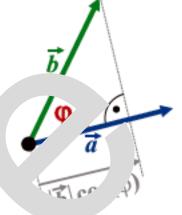
ltipli' n mit alaren (= Zahlen)

Konmeare Vektore \vec{i} und \vec{b} :

$$\vec{b} = k \cdot i$$


$$\begin{pmatrix} x \\ a_z \end{pmatrix} = \begin{pmatrix} k \cdot a_x \\ k \cdot a_y \\ k \cdot a_z \end{pmatrix}$$

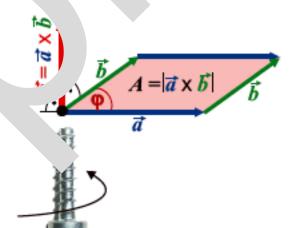
Komplanare Vektoren: \vec{c} ist komplanar zu \vec{a} und \vec{b} wenn \vec{c} eine Linearkombination von \vec{a} und \vec{b} ist, also wenn es $t, s \in \mathbb{R}$ gibt, so dass $\vec{c} = t \cdot \vec{a} + s \cdot \vec{b}$ gilt.



- ► Mittelpunkt von A und B: $\vec{r}_M = \frac{1}{2} (\vec{r}_A + \vec{r}_B)$
- ► Schwerpunkt $\triangle ABC$: $\vec{r}_S = \frac{1}{3} (\vec{r}_A + \vec{r}_B + \vec{r}_C)$ (siehe auch S. 7)

▶ Skalarprodukt: (Senkrechte Projektion von b auf a)

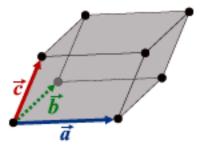
$$\vec{a} \cdot \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \cdot \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = a_x b_x + a_y b_y + a_z b_z = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\varphi)$$


- ► Winkel φ zwischen \vec{a} und \vec{b} : $\cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$
- ▶ Senkrechtbedingung: $\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$ falls \vec{a} , $\vec{b} \neq \vec{0}$.
- ▶ Vektorprodukt:

$$\vec{c} = \vec{a} \times \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x \end{pmatrix}$$

$$\vec{c} \perp \vec{a}$$
 und $\vec{c} \perp \vec{b}$

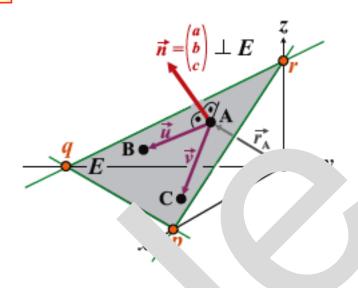
$$|\vec{c}| = |\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}|$$
 $u(\varphi)$


 $|\vec{c}|$ = Fläche des von \vec{a} und \vec{b} fgespannten Parallelo^{*}

▶ Spatproduk

$$V = |(\vec{a} \times \vec{b}) \cdot \vec{c}| \qquad |(\vec{b} \times \vec{a}) - \vec{a}| = |(\vec{c} \times \vec{a}) \cdot \vec{b}|$$

$$V = V \qquad \text{les v.} \qquad , b \text{ und } \vec{c} \text{ aufgespannten Spates.}$$

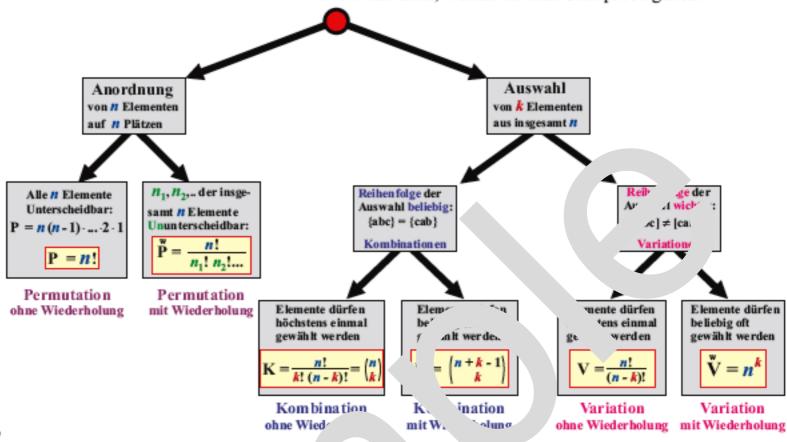

Geraden e S. 14.

10.1 Ebenen

- ▶ Parameterform: $E: \vec{r} = \vec{r}_A + t \cdot \vec{u} + s \cdot \vec{v}$
 - Falls 3 Punkte A, B, C oder Punkt A und zwei verschiedene Richtungen $\vec{u} = \overrightarrow{AB}$ und $\vec{v} = \overrightarrow{AC}$ gegeben sind.

 - Normalenvektor:

$$\vec{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \vec{u} \times \vec{v} \perp E \quad \text{(vgl. S. 28)}$$


- ► Koordinatenform: $E: \vec{n} \cdot (\vec{r} \vec{r}_A) = 0$ oder E + cz = 0
 - Hessesche Normalform: H(x, y, z): $\frac{ax + by + by}{\sqrt{a^2 + b^2 + b^2}} = 0$
 - Abstand P(u / v / w) zu $E: d(P, -\frac{u+bv}{\sqrt{a^2+b}})$
- ► Achsenabschnittsform: $E: \frac{x}{p} + \frac{1}{r} + \frac{1}{r}$ 1

Ebene E parallel zur x-Achse: E: $\frac{z}{q}$ = 1 und zyklisch $\frac{z}{x}$

11 Stochastik

11.1 Kombinatorik

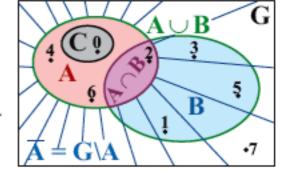
Start: Kriterien, welche für eine Stichprobe gelten.

Fakultät: $n! := 1 \cdot 2 \cdot \dots \cdot n$

Binom. 'coeffiz.'
$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Symmetrie: $\binom{n}{k} = \binom{n}{n-k}$

Fursion:
$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$


11.2 Wahr neinly 'eit, h ngenlehre

- $\mathbf{Grun}_{\mathcal{A}}\mathbf{m}\boldsymbol{\epsilon}$ $\mathbf{e} = \mathbf{N}$ $\mathbf{n}_{\mathbf{e},\mathcal{A}}$ aller möglichen Ergebnisse (= Ergebnisraum).
- A, B, C = Er miss = Teilmengen von G

Br' =
$$\{0, 1, 2, 3, 4, 5, 6, 7\}$$
, $\mathbf{A} = \{0, 2, 4, 6\}$, $\mathbf{B} = \{1, 2, 3, 5\}$, $2 \in \mathbf{A}$; $3 \notin \mathbf{A}$

 $|\mathbf{A}| = \mathbf{M}\mathbf{a}\mathbf{c}$ gkeit = Anzahl Elemente von A.

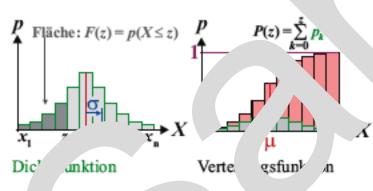
- $A \cap B =$ innittmenge = A und B.
- Vereinigungsmenge = A oder B.
- $\bullet \ \overline{\mathbf{A}} \ = \mathbf{G} \backslash \mathbf{A} = \left\{ \begin{matrix} \mathbf{Gegenereignis\ oder} \\ \mathbf{Komplement\ zu\ A} \end{matrix} \right\} = \mathbf{G}\ \mathbf{ohne\ A}.$
- $C \subseteq A = Teilmenge = C$ enthalten in A.
- $\{\} = \emptyset =$ Leere Menge.

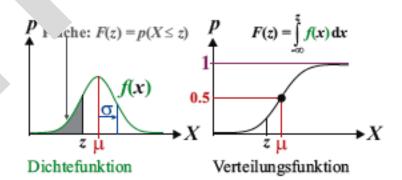
Laplace-Wahrscheinlichkeit: Alle Elemente in G treten gleichwahrscheinlich auf. Dann gilt:

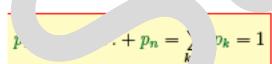
$$p(\mathbf{A}) = \frac{|\mathbf{A}|}{|\mathbf{G}|} = \frac{\mathbf{Anzahl} \ \mathbf{Elemente \ in \ A}}{\mathbf{Anzahl} \ \mathbf{Elemente \ in \ G}} = \frac{\mathbf{g\"{u}nstig}}{\mathbf{m\"{o}glich}}$$

- $\bullet \left\{ \begin{array}{ll} \textbf{Unm\"{o}gliches Ereignis} & p(\emptyset) = 0 \\ \textbf{Sicheres Ereignis} & p(\mathbf{G}) = 1 \end{array} \right\} \quad \Rightarrow \quad \boxed{ 0 \leq p(\mathbf{A}) \leq 1 }$
- $A \cap B$

- Gegenwahrscheinlichkeit $p(\overline{A}) = 1 p(A)$
- Addititionssatz $p(A \cup B) = p(A) + p(B) p(A \cap B)$
- Bedingte Wahrscheinlichkeit p(B | A) = Wahrscheinlichkeit, dass B eintritt, unter der Bedingung, dass A bereits eingetreten ist: ,,A = Wenn, B = Dann" (Verkleinerung der Grundmenge von G auf A): p(B | A) = |A ∩ B| / p(A)
- Multiplikationssatz $p(A \cap B) = p(A) \cdot p(B|A)$
- A und B sind unabhängig, falls $p(A \cap B) = p(A) \cdot p(B)$ gi.
- Binomialverteilung (Bernoulli) siehe S. 32.


11.3 Wahrscheinlichkeitsverteilungen


Diskrete Verteilung:


Zufallsvariable X nimmt ausschliesslich die n Werte x_1, x_2, \ldots, x_n mit den Wahrscheinlichkeiten (=relativen Häufigkr) Gewichtungsfaktoren) p_1, p_2, \ldots, p_n ε

Kontinu. 'che Ver' lung:

varia ann beliebige Werte $x \in A$ ann beliebige Werte where $x \in A$ ann beliebige Werte $x \in A$ and $x \in A$

Normierung

$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

Mittelwert (Erwartungswert)

$$E(X) = \mu = \int_{-\infty}^{\infty} f(x) \cdot x \, dx$$

$$\operatorname{var}(X) = \sigma^2 = \sum_{k=1}^n p_k \cdot (x_k - \mu)^2$$

Varianz

$$\operatorname{var}(X) = \sigma^2 = \int\limits_{-\infty}^{\infty} f(x) \cdot (x - {\color{black} \mu})^2 \, dx$$

 $\sigma = \sqrt{\sigma^2}$

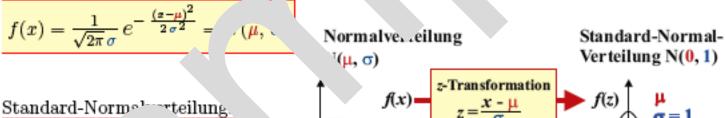
Standardabweichung

$$\sigma = \sqrt{\sigma^2}$$

Seien X, Y zwei Zufallsvariablen und a, b Konstanten. Dann gilt:

$$E(a \cdot X + b \cdot Y) = a \cdot E(X) + b \cdot E(Y)$$

$$\operatorname{var}(a\cdot X\ +\ b) = a^2\cdot\operatorname{var}(X)$$


Binomialverteilung, Bernoulli (diskrete Verteilung)

Stichprobenraum besteht aus genau zwei Elementen: $S = \{A, \overline{A}\}$ mit den gleichbleibenden Wahrscheinlichkeiten p(A) = p und $p(\overline{A}) = 1 - p$. Bei genau n Wiederholungen trete Ereignis A X mal ein. Dann berechnet sich die Wahrscheinlichkeit, dass...

- A mindestens einmal eintritt: $P(X \ge 1) = 1 (1 p)^n$
- A genau k mal eintritt: $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ $0 \le k \le n$
- A höchstens x mal eintritt: $P(X \le x) = \sum_{k=0}^{x} {n \choose k} p^k (1-p)^n \qquad 0 \le \le n$
- Standardabwe ung: $\sqrt{np(1-\rho)}$ • Erwartungswert: E(X) = n p
- Für n p (1-p) > 9 kann eine Binomialverteilung durch ein. Formalverteilung approximiert werden.

rliche 'ang) 11.5Normalverteilung (kor

Dichtefunktion:

$$f(z) = \frac{1}{\sqrt{c}} \qquad \frac{z^{-}}{2} = \qquad (0,1)$$

• Verteilungsfu tion:

$$F' = \int_{-\infty} -2^{\frac{\lambda^2}{\sigma^2}} dt$$

Symmetrie:

$$f(\mu + x) = f(\mu - x)$$
 $f(-z) = f(+z)$
 $F(-z) = 1 - F(+z)$

Standard rmalverteilung:

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{t^2}{2}} dt \quad (\Rightarrow \text{ Tabelle im inneren hinteren Umschlag})$$

σ-Umgebungen bei Normalverteilung:

1σ -Umgebung	2σ -Umgebung	3σ -Umgebung
$p(\mu - x < 1\sigma) \approx 68.3\%$	$p(\mu - x < 2\sigma) \approx 95.4\%$	$p(\mu - x < 3\sigma) \approx 99.7\%$

11.6 Statistik: Daten mit einer Variablen

Seien $X = \{x_1, x_2, \dots, x_k\}$ die Werte einer Stichprobe und n_1, n_2, \dots, n_k deren **absolute** Häufigkeiten. Für den Umfang der Stichprobe gilt $n = \sum_{i=1}^k n_i = n_1 + n_2 + \dots + n_k$.

Die relative Häufigkeit ist durch $p(x_i) = \frac{n_i}{n}$ definiert. Insbesondere gilt $\sum_{i=1}^{k} p(x_i) = 1$.

	Einzeldaten	Gruppendaten (Klassen)	
Daten	n Werte x_1, x_2, \ldots, x_n	k Werte x_1, x_2, \ldots, x_k der abs. Häufigkeit n_1, n_2, \ldots, r_k	
Arithmetischer Mittelwert	$\overline{x} = E(X) = \frac{1}{n} \sum_{i=1}^{n} x_i$	$\overline{x} = E(X) = \frac{1}{n} \sum_{i=1}^{n} r_i = \sum_{i=1}^{n} r_i = \sum_{i=1}^{n} r_i$	
Median	Der Median $x_{0.5}$ der Werte einer geordneten Stichp. $^{\circ}$ ist		
	• der in der Mitte liegende Wert, fall ung		
	$ullet$ Der Mittelwert beider mittleren ${}^{1\!$		
Modalwert (Modus)	Der Modalwert x_M ist de	er am häufig. auftreter Messwert.	
Spannweite		$=x_{\mathrm{max}}$ x_{min}	
Varianz*	$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i)$	$\mathbf{x}_{\tau}^2 = \frac{1}{n-1} \sum_{i=1}^{n} \mathbf{x}(x_i - \mathbf{x}) $ oder	
	$s_x^2 = \sum_{i=1}^k p \qquad (x_i - x_i)$	$(-\overline{x})^2 = (X^2) - (E(X))^2$	

[*] Wenn die Werte x_1, \dots, x Popula on darstellen oder wenn die Variation innerhalb der Stichprobe gesucht i, erse om Nenner n-1 durch n.

Stan abwolchung: $s_1 = \sqrt{s_x^2}$

Un tichprobate chen, dient der Variationskoeffizient $V = \frac{s_x}{T} \cdot 100\%$

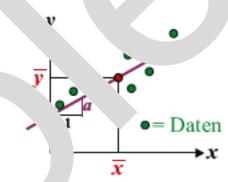
Box P. Crmittle den edian $x_{0.5}$, das obere $(x_{0.75})$ und das untere $(x_{0.25})$ Quartil, die kleinste (x_{min}) und die grösste (x_{max}) Stichprobe. Dann

kleinste 25%
$$25\%$$
 grösste 25% aller Daten x_{min} $x_{0.25}$ $x_{0.5}$ $x_{0.75}$ x_{max}

Ungleichung von Tschebyschev:

Für eine Stichprobe mit Mittelwert \overline{x} und Varianz s_x^2 gilt für die Wahrscheinlichkeit p dass ein Messwert x innerhalb einer $\pm \lambda$ -Umgebung um den Mittelwert liegt: $p(|x-\overline{x}|<\lambda) \geq 1 - \frac{s_x^2}{\lambda^2}$

11.7 Daten mit zwei Variablen: Regression und Korrelation


Seien $(x_1, y_1), (x_2, y_2), ... (x_n, y_n)$ n Paare von Messwerten. Die Abhängigkeit zwischen den Zufallsvariablen X und Y kann durch eine von Parametern a, b,... abhängigen Modellfunktion y = f(x) beschrieben werden. Die Parameter a, b,... von f werden so gewählt, dass das mittlere Quadrat der Abweichungen von $y_i - f(x_i)$ minimal wird:

$$F(X) = \sum_{i=1}^{n} (y_i - f(x_i))^2 \longrightarrow \text{minimal}$$

Lineare Regression:

Modellfunktion: $y = f(x) = a \cdot x + b$ mit

• Steigung: $a = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{c_{xy}}{s_x^2} = r_x$

• y-Achsenabschnitt: $b = \overline{y} - a \cdot \overline{x}$

Korrelationskoeffizient:

Kova. z

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot \sum_{i=1}^{n} (y_i - \overline{y})}} = \frac{c_{xy}}{s_x \cdot s_y}$$

$$c_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$$
$$c_{xy} = E(X \cdot Y) - E(X) \cdot E(Y)$$

Alternative: G' chungs z zur Beschnung von a und b der Regressionsgeraden:

Index

Ähnlichkeit, 6 Äquivalenzumformungen, 3 Ableitung, 23, 24 Ableitungsregeln, 23 Absolute Häufigkeit, 33 Abstand, 29 Achsenabschnittsform (g, E), 14, 29 Additionstheoreme trig. Funktionen, 18 Algebra, 3, 4 Arithmetische Folgen und Reihen, 20 Assoziativgesetz, 3 Asymptote, 15 Ausmultiplizieren, 3 Basis, 5, 16 Basiswechsel, 5 Bedingte Wahrscheinlichkeit, 31 Bestimmtes Integral, 24 Betrag, 2, 14, 27 Binomialkoeffizient, 30 Binomialkoeffizienten, 4, 30 Binomialverteilung, 32 Binomische Formeln, -Satz, 4 Binomischer Satz, 4 Bogenlänge, 9, 25 Bogenmass, 17 Box-Plot, 33 Bruchrechnen, 4

Cavalieri, Prinzip von, 10 Cosinusfunktion, 17 Cosinussatz, 6

Definitionsbereich, 13
Dichtefunktion, 31, 32
Differentialrechnung, 23
Diskriminante, 19
Distributivgesetz, 3
Divergenz, 21
Dodekaeder, 11
Doppelbrüche, 4
Drachenviereck, 8
Dreiecke, 6

Einheitskreⁱ Einheits^r Ellipsa Erge' aum, 30 Erst oleitung, 23 ngswert, 3¹ Erw Euki. vtz v Eulers. Eulersche zani, 16 Explizite Darstellung, 20 Exponent, 5 Exponentialfunk Extrema, 23

Faktorisieren, 3 Fakultät, 30 Fläche unter Funktionen, 24 Flächeninhalt, 6 Folgen und Reihen, 20 Funktion, 13

Ganze Zahlen, 2 Ganzrationale Funktionen, 13 Gausssche Zahlenebene, 2 Gebrochen-rationale Funktionen, 15 Gegenwahrscheinlichkeit, 31 Geometrische Folgen und Reihen, 20 Geraden, 14 Gleichschenklige, gleichseitige Dreiecke, 7 Gleichungen, 3, 19 Goldener Schnitt, 22 Grenzwerte, 21

Höhe, 6, 7, 10 Höhensatz, 6 Harmonische Reihe, 20 Harmonische Teilung, 22 Hauptsatz Diff / Int, 24 Hessesche Normalform, 29 Hochpunkt, 23 Hyperbelfunktionen, 15

Ikosaeder, 11
Imaginäre Einheit, 2
Inkreisradius, 7, 8
Inkugelradius, 12
Integralrechnung, 24
Integrationsregeln, 25
Irrationale Zahlen, 2

Kathetensatz, Kegel, 10 Kehrwert Kettenrege Klammerrege. Klasse (Statistı. Vektor e, kompi. ik, 30 amı. Kommu eetz, 3 Komplanar toren, 27 Komplement, omplexe Zahle. njugierte, stantenregel, 23, 25 rgenz, 21 Koς tenform (g, E), 29 Korre. , Kovarianz, 34 Kreis: Tale und Gleichung, 9 Kreiswinkelsätze, 9 Kugel: Teile und Gleichung, 11

Länge (Vektor), 27
Laplace-Wahrscheinlichkeit, 30
Leere Menge, 30
Lineare Funktionen, 14
Lineare Regression, 34
Linearkombination, 27
Logarithmen, 5
Logarithmusfunktionen, 16

Mantelfläche, 10 Median, 33 Mengenlehre, 30 Mittelpunkt, 9, 11, 28 Mittelsenkrechte (Dreieck), 7 Mittelwert, 33 Mittelwerte, 22 Modus, Modalwert, 33

Natürliche Zahlen, 2 Nennergrad, 15 Newtonsches Nullstellenverfahren, 19 Normalenvektor, 28, 29 Normalform (g, E), 14, 29 Normalverteilung, 32 Nullstelle, 19

Oberfläche, 10 Octaeder, 11 Ortsvektor, 27

Parabel, 15 Parabeln, 13 Paraboloid, 12 Parallel (g, E) , 14 Parallelogramm, 8, 28 Parameterform (Geraden, Ebenen), 14, 29 Partielle Integration, 25 Pascalsches Zahlendreieck, 4 Periode, 17 Permutation, 30 Platonische Körper, 11 Polare (an Kreis), 9 Polgeraden, 15 Polyeder, 11 Polynomdivision, 15, 19	Steigung, 14, 34 Stichprobenraum, 30 Strahlensätze, 6 Substitutionsregel (int), 25 Summenregel, 23, 25 Symmetrie, 18 Tangensfunktion, 17 Tangente (Kreis, Kegelschnitt), 9 Tangentensteigung (Funktion), 23 Tangentenviereck, 8 Tangentialebene an Kugel, 11 Taylor-Polynome, 26 Teilmenge, 30 Termumformungen, 4
Polynomfunktion, 13	Terrassenpunkt, 23
Potenzfunktionen, 15 Potenzieren, 2, 3	Tetraeder, 11 Thaleskreis, 9
Potenzreihen, 26	Tiefpunkt, 23
Potenzsätze, 5 Prisma, 10	Torus, 12 Translation
Produktregel, 23	Trapez, 8
Punktsymmetrie, 18 Pyramiden, 10	Trigonometrische ktionen, Trigonomtrische kneen, 1.
Pythagoras, Satz von, 6	Tschebyschev, Ungle. 7, 33
	The behavior 10
Quader, 10 Quadrat, 8	Umkehrf 13 Umkr
Quadratische Gleichungen, 19	Uml Aradius, 1.
Quadratwurzel, 5	Unb immtes Integ. 4 liche geometrisc. \telebelle, 20
Quotientenregel, 23	U. hung, 3
Radius, 9, 11	Varian 33
Radizieren, 2, 3 Rationale Zahlen, 2	Variation,
Raute, 8	riationsk. ut, 33
Rechteck, 8 Rechtwinklige Dreiecke, 6	Ve. vodukt, 2
Reelle Zahlen, 2	Verea. gsmenge,
Regel von de l'Hôpital, 21	Verteilungsfunktion, 31, 32
Regression, 34 Rekursive Darstellung, 20	Vertikale Asymptoten, 15
Relative Häufigkeit, 33	Vierecke, 8 √ieta, Satz von, 19
Richtungsvektor (g, E) , 14 Richtungsvektor (Geraden, V 14, 29	Vollständige Induktion, 22
Rotation (Vektor), 5	Volumen, 10, 12
Rotationsvolumen, 12,	Würfel, 10, 11
Sattelpunkt, 23	Wahrscheinlichkeit, 30
Sc ¹ t, 15	Wendepunkt, 23 Wertebereich, 13
nnittmenge, 30	Winkel (g, E) , 14
Schnittwinkel (g, E) , 14	Winkel (Vektoren), 28 Winkelhalbierende (Dreieck), 7
Schwerpunkt Schwerpunkt	Wurzel, 5
Segr	Wurzelfunktionen, 15
and Sekantensa)	z-Transformation, 32
Sehnenviereck, 8	Zählergrad, 15
Seitenhalbierende (* .k), 7	Zahlenfolge, 20 Zentriwinkel (Kreis), 9
Sektor, Sektor	Zone (Kugel), 11
Senkrecht, 28	Zufallsvariable, 31
Senkrecht (g, E) , 14 Sinusfunktion, 17	Zylinder, 10
Sinussatz, 6	
Skalar, 27 Skalar produkt 28	
Skalarprodukt, 28 Spannweite, 33	
Spatprodukt, 28	
Spiegelsymmetrie, 18 Spitze Körper, 10	
Spurpunkte, 14	
Stammfunktion, 24	
Standardabweichung, 31–33 Statistik, 33	